nes

Product name : Holding magnet with facilitated separation $230 \times 50 \times 30$ / N PERFORMANCE PARAMETERS

Manufacturer	Enes Magnesy
Length	$230[\mathrm{~mm}]$
Width	$50[\mathrm{~mm}]$
Height	$30[\mathrm{~mm}]$
handle length	$215[\mathrm{~mm}]$
Thread type	wewnętrzny, M8
threads quantity	3
Magnet type	Neodymium
Maximal hoisting capacity	$600[\mathrm{~kg}]$
recommended maximum thickness of the metal sheet	$10[\mathrm{~mm}]$
Coating	Zinc (Zn)
Maximum working temperature	$\leq 80^{\circ}[\mathrm{C}]$
with easier detachment	yes
handling mode	ręczny
With handle	yes
Weight	$2.84[\mathrm{~kg}]$

The maximum pull force: ~600 [kg]

Three threaded holes M8.

Length of handle: ~215 [mm].
Total widht with handle: $\sim \mathbf{8 7}$ [mm].

Holding magnet with facilitated separation is used for secure of molds on vibro-tables during production of concrete elements.

In the holding magnet sintered neodymium magnets (NdFeB) were used. The maximum working temperature for holding magnets involving neodymium magnets is $\mathbf{8 0}$ o[C].

The pull force given refers to hoisting capacity measured in optimal conditions, by using as a backing plate a sheet made of low-carbon steel, $10[\mathrm{~mm}]$ thick, of smooth surface and with the force acting perpendicularly, in room temperature.

Notice: the pull force given should be treated as only a comparative value. An actual pull force depends on the following factors:

- air gap (a distance) between holding magnet and an attracted element
- material, of which an attracted element is made (the higher carbon proportion in steel, the smaller pull force)
- surface of an attracted element (the smoother the surface, bigger the pull force)
- direction of acting of detaching force (the biggest pull force is obtained with perpendicular acting of detaching force)
- thickness of an attracted element (the element cannot be too thin, because in such case part of magnetic flux is not used for closing of a magnetic circuit)
- working temperature.

We generally recommend individual checking of the holding magnet in any specific working conditions.
Weight of the holding magnet: $\sim 2,8[\mathrm{~kg}]$

