Product name: $40 \times 18 \times 10 / \mathrm{N} 45$ - NdFeB (neodymium) magnet PERFORMANCE PARAMETERS

Length	40 [mm] +0,1/-0,1
Width	$18[\mathrm{~mm}]+0,1 /-0,1$
Height	10 [mm] +0,1/-0,1
magnetizing direction along dimension	10 [mm]
Grade	N45
Magnet type	Neodymium
Maximal hoisting capacity	24 [kg]
The pull force was measured by using metal sheet 10 [mm] thick, acting with perpendicular detaching force. With the force acting on the sliding off, the lifting capacity of the magnet will be 5 times smaller. The air gap comprised between the metal sheet and a magnet causes reduction in the pull force.	
Magnetic field in geometrical center of the magnetic pole surface	0,365 [T]
Coating	Nickel (NiCuNi)
Maximum working temperature	$\leq 80^{\circ}$ [C]
For flat magnets and magnets mounted in the open magnetic circuit working temperature may be insignificantly lower. For high magnets and magnets mounted in the closed magnetic circuit working temperature equals max. working temperature for a given material. Curie's temperature is ~ $310^{\circ}[\mathrm{C}]$. Temperature coefficient of remanence $\mathrm{TK}\left(\mathrm{Br}\right.$: approx. $\sim 0,12 \% /^{\circ}[\mathrm{C}]$. Temperature coefficient of coercivity TK(Hc)): approx. $-0,6 \% /{ }^{\circ}[\mathrm{C}]$.	
Magnetic moment	9312,448
Weight	54 [g]
Sintered neodymium magnets are brittle (fragile). A neodymium magnet without housing could break after an impact with another strong magnet.	
All the numbers quoted were obtained as a result of tests with one specific item in a room temperature and are intended to serve for comparison of practical magnetic properties of magnets offered by the shop.	

MAGNETIC PROPERTIES OF MATERIAL GRADE N45

remanence B_{r}	$1,32-1,38[\mathrm{~T}]$
coercivity $\mathrm{H}_{\mathrm{c}} \mathrm{B}$	$\min .875[\mathrm{kA} / \mathrm{m}]$
coercivity H_{d}	$\min .955[\mathrm{kA} / \mathrm{m}]$
energy product $(\mathrm{BH})_{\max }$	$342-366\left[\mathrm{~kJ} / \mathrm{m}^{3}\right]$

Magnetic properties of a particular material, together with its shape, volume, max. working temperature and direction of magnetization have influence on practical magnetic properties of a magnet.

As an example, you will find attached a graph of a course of the II quadrant of magnetic
hysteresis loop for a material grade N45.

MAGNETIC PROPERTIES OF MATERIAL GRADE N38

density	$\sim 7,5[\mathrm{~g} / \mathrm{cm} 3]$
Vickers hardness (HV)	$\sim 600[\mathrm{~kg} / \mathrm{mm} 2]$
resistivity	$\sim 144[\mathrm{uOhm} \times \mathrm{cm}]$

TECHNICAL DRAWING

