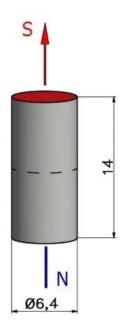


Product name : D6,4 x 14 / N38 - NdFeB (neodymium) magnet

PERFORMANCE PARAMETERS

External diameter	6,4 [mm] +0,1/-0,1
Height	14 [mm] +0,1/-0,1
magnetizing direction along dimension	14 [mm]
Direction of magnetization along the height means that one circular su N-pole, while the other – opposite – circular surface refers to the S-pole	
Grade	N38
Magnet type	Neodymium
Maximal hoisting capacity	1,8 [kg]
The pull force was measured by using metal sheet 10 [mm] thick, actin detaching force. With the force acting on the sliding off, the lifting cap times smaller. The air gap comprised between the metal sheet and a r the pull force.	acity of the magnet will be 5
Magnetic field in geometrical center of the magnetic pole surface	0,457 [T]
Coating	Nickel (NiCuNi)
Maximum working temperature	≤ 80 °[C]
For flat magnets and magnets mounted in the open magnetic circuit insignificantly lower. For high magnets and magnets mounted in the cl temperature equals max. working temperature for a given materi 310°[C]. Temperature coefficient of remanence TK(Br: approx. coefficient of coercivity TK(HcJ): approx0,6 %/°[C].	losed magnetic circuit working al. Curie's temperature is ~
Magnetic moment	502,74
Weight	3,38 [g]
Sintered neodymium magnets are brittle (fragile). A neodymium magnet w after an impact with another strong magnet.	ithout housing could break
All the numbers quoted were obtained as a result of tests with one specific and are intended to serve for comparison of practical magnetic properties shop.	

remanence B_r 1,21 - 1,25 [T] coercivity $H_c B$ min. 899 [kA/m] coercivity $H_c J$ min. 955 [kA/m] energy product (BH)_{max} 286 - 302 [kJ/m³]


Magnetic properties of a particular material, together with its shape, volume, max. working temperature and direction of magnetization have influence on practical magnetic properties of a magnet.

As an example, you will find attached a graph of a course of the II quadrant of magnetic hysteresis loop for a material grade N38.

MAGNETIC PROPERTIES OF MATERIAL GRADE N38

density	~7,5 [g/cm3]
Vickers hardness (HV)	~600 [kg/mm2]
resistivity	~144 [uOhm x cm]

TECHNICAL DRAWING

